If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+66x+384=600
We move all terms to the left:
3x^2+66x+384-(600)=0
We add all the numbers together, and all the variables
3x^2+66x-216=0
a = 3; b = 66; c = -216;
Δ = b2-4ac
Δ = 662-4·3·(-216)
Δ = 6948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6948}=\sqrt{36*193}=\sqrt{36}*\sqrt{193}=6\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-6\sqrt{193}}{2*3}=\frac{-66-6\sqrt{193}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+6\sqrt{193}}{2*3}=\frac{-66+6\sqrt{193}}{6} $
| -3d=-90 | | 3+2c=9-10c | | 2(12-x)-4×=6 | | -2x2+4x=0 | | 5-8=2x+7 | | (x-3)=6x=7 | | -6(4x-6)+1=-24x+37 | | -10=-5y-65 | | 10t=12 | | 2x+16+40=7x-4 | | 6+2(3j-2)=4(j+1) | | 3k+17=8 | | 18w=8 | | x^2-5x+6=3x^2+4x | | -2j–8=-j | | 11x-6+70=21x+4 | | x^2-5x+6=3x | | 0=4x^3+21x^2+21x+4 | | 11b^2-22=6b | | -6(4x-6)+1=-24×+37 | | 11p^2-30p+19=0 | | 7x-5+8x-6=139 | | 5r-8=7 | | 2x^2+14=−84 | | 9x+1=1x-23 | | (2x-30)+(3x-54)+(4x-72)=48 | | 1/3x+8=21 | | -2x(7x+15)=18+2x | | 6+3y=21 | | 7.2f=f | | 2(6x+4)-4=12x+4 | | 5x-5+18x-3=80 |